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ABSTRACT: During the 2019 Spring Forecasting Experiment in NOAA’s Hazardous Weather Testbed, two NWS forecasters
issued experimental probabilistic forecasts of hail, tornadoes, and severe convective wind using NSSL’s Warn-on-
Forecast System (WoFS). The aim was to explore forecast skill in the time frame between severe convective watches
and severe convective warnings during the peak of the spring convective season. Hourly forecasts issued during
2100–0000 UTC, valid from 0100 to 0200 UTC demonstrate how forecasts change with decreasing lead time. Across
all 13 cases in this study, the descriptive outlook statistics (e.g., mean outlook area, number of contours) change
slightly and the measures of outlook skill (e.g., fractions skill score, reliability) improve incrementally with decreasing
lead time. WoFS updraft helicity (UH) probabilities also improve slightly and less consistently with decreasing lead
time, though both the WoFS and the forecasters generated skillful forecasts throughout. Larger skill differences with
lead time emerge on a case-by-case basis, illustrating cases where forecasters consistently improved upon WoFS guidance,
cases where the guidance and the forecasters recognized small-scale features as lead time decreased, and cases where the
forecasters issued small areas of high probabilities using guidance and observations. While forecasts generally “honed in” on
the reports with slightly smaller contours and higher probabilities, increased confidence could include higher certainty that
severe weather would not occur (e.g., lower probabilities). Long-range (1–5 h) WoFS UH probabilities were skillful, and
where the guidance erred, forecasters could adjust for those errors and increase their forecasts’ skill as lead time decreased.

SIGNIFICANCE STATEMENT: Forecasts are often assumed to improve as an event approaches and uncertainties
resolve. This work examines the evolution of experimental forecasts valid over one hour with decreasing lead time issued
using the Warn-on-Forecast System (WoFS). Because of its rapidly updating ensemble data assimilation, WoFS can help
forecasters understand how thunderstorm hazards may evolve in the next 0–6 h. We found slight improvements in forecast
and WoFS performance as a function of lead time over the full experiment; the first forecasts issued and the initial WoFS
guidance performed well at long lead times, and good performance continued as the event approached. However, individual
cases varied and forecasters frequently combined raw model output with observed mesoscale features to provide skillful
small-scale forecasts.

KEYWORDS: Ensembles; Forecast verification/skill; Numerical weather prediction/forecasting; Severe storms;
Thunderstorms; Probability forecasts/models/distribution

1. Introduction

Each year during the 5-week annual Spring Forecasting
Experiment (SFE; Gallo et al. 2017; Clark et al. 2020), new
forms of NWP, post-processing methods, and forecasting tech-
niques are tested during the peak of the spring convective sea-
son. By demonstrating these new innovations to participants
from the research, model development, and operational fore-
casting communities, researchers and forecasters can under-
stand the unique challenges faced by each group in their daily
routines. For example, researchers can better understand the
time pressures constraining operational forecasters, while
operational forecasters can learn the strengths and weaknesses

of experimental guidance. This research-to-operations and
operations-to-research feedback loop allows forecasters to
experience and provide feedback on new tools, while enabling
researchers to iteratively develop tools and beneficial guidance
for forecasters. New versions of operational systems such as the
HRRR (Benjamin et al. 2016; Alexander et al. 2020) and the
High Resolution Ensemble Forecast system (HREF; Roberts
et al. 2019) are frequently tested in SFEs, as are new forecasting
products. For example, Day 2 individual hazard probabilities for
tornadoes, severe hail [$1 in. (2.54 cm)] and severe convective
winds [$58 mph (25.93 m s21)] issued by Storm Prediction
Center (SPC) forecasters were operationalized on 30 January
2020, after being tested for years in the SFE (Clark et al. 2020).

Much of the guidance examined during SFEs focuses on
the 12–36-h time frame, and is initialized once or twice a day
with forecasts extending to 36–60 h. A notable exception to
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this is the HRRR, which provides hourly forecasts to 18 h and
forecasts to 36 h every 6 h (Benjamin et al. 2016; Alexander
et al. 2020). However, rapidly updating convection-allowing
model (CAM) ensemble forecasts are more difficult to pro-
duce, in part because of the computational expense. The
experimental Warn-on-Forecast System (WoFS; Wheatley
et al. 2015; Heinselman et al. 2022, manuscript submitted to
Geophys. Monogr.) is the most frequently updating system
tested in the SFE, producing forecasts to 6 h (3 h) at the top
(bottom) of every hour. The WoFS uses 15-min data assimilation
to incorporate current radar and satellite observations (Jones et al.
2016), providing guidance from convective warning scales (∼30
min) to watch or mesoscale convective discussion scales (∼1–6 h).
The SFE has examined WoFS since 2017 with activities ranging
from surveying forecasters’ interpretations of different ensemble
guidance products (Wilson et al. 2019) to evaluating 1.5-km hori-
zontal resolution versions of the WoFS (half the usual WoFS res-
olution; Clark et al. 2021a) to using WoFS for experimental
forecasting activities (Clark et al. 2020, 2021a).

The WoFS is a unique CAM ensemble in many respects.
Besides the data assimilation, the perspective of WoFS differs
from traditional CAMs, as it was developed as an alternative to
the “Warn-on-Detection” paradigm where forecasters issue
warnings based on ongoing, observed storms (Stensrud et al.
2009, 2013). Instead, the “Warn-on-Forecast” concept visualizes
a system where individual storms are sufficiently well-forecasted
to allow forecasters to issue warnings based on the guidance,
resulting in longer lead times for people in the storm’s path. This
vision extends beyond the warning to include longer lead time
products such as SPC Mesoscale Convective Discussions and
Weather Prediction Center Mesoscale Precipitation Discussions.
After years of development and testing, the WoFS is the ensem-
ble designed to realize the Warn-on-Forecast concept. However,
as with any new tool, extensive testing and development
work remains to successfully transition WoFS into opera-
tions, particularly with the shift to NOAA’s Unified Forecast
System (https://ufscommunity.org/), which has the goal of unit-
ing NOAA’s modeling efforts around a single dynamical core
differing from the current WoFS configuration.

Verification methods for WoFS and other high-resolution
CAMs were developed concurrently with the development of
the WoFS modeling and data assimilation framework. Demuth
et al.’s (2020) survey of forecaster needs regarding CAM
ensembles shows a strong desire for useful verification metrics,
particularly information about the reliability of the guidance
and the probabilities generated by a given ensemble, and the
performance of the ensemble in specific scenarios. Traditional,
gridpoint-based verification for severe weather frequently
suffers from the “double penalty” problem (Mass et al. 2002;
Done et al. 2004; Gilleland et al. 2009), where a forecast
displaced from the observation is penalized as both a “false
alarm” and a “miss.”However, such a forecast may still provide
value to the forecaster or end user if it indicates that a hazard
may be nearby during the forecast period (Kain et al. 2008).
Several methods account for these displacement errors, includ-
ing neighborhood approaches (see Schwartz and Sobash 2017
for an overview) and object-based verification (Wolff et al. 2014;
Skinner et al. 2018). Object-based verification of the WoFS

(e.g., Jones et al. 2018; Skinner et al. 2018; Flora et al. 2019,
2021) as well as other CAMs (e.g., Gallus 2010; Johnson
et al. 2013, 2020; Potvin et al. 2019; Adams-Selin et al.
2019), have frequently examined shorter-term forecasts ver-
ified against radar or satellite proxies and few studies have
applied object-based methodology to convective outlooks
(e.g., Gallo et al. 2021).

SFE 2019’s usage of the WoFS was the most extensive to
date. Two forecasters were brought in specifically to forecast
a series of outlooks through the evening using WoFS. Fore-
casters issued two rolling outlooks each hour and an outlook
that was valid at a consistent time, resulting in shorter lead
times as time progressed. Further details will be provided in
the methodology section. Forecaster product usage data was
also tracked and explored in Wilson et al. (2021). Wilson et al.
(2021) examined product usage patterns, product-outlook
performance correlations, and access pattern similarity across
the entire forecasting task period in SFE 2019 (a subset of
which is studied here; see section 2b for details on the outlook
issuance task). They found that participants accessed the
reflectivity, rotation, hail, and surface wind products most fre-
quently, and accessed the rotation products after reflectivity
products at least once daily. Rotation products included the
2–5-km hourly maximum updraft helicity (UH; Kain et al.
2010), which is frequently used as a skillful proxy for any
severe weather hazard (Sobash et al. 2011).

While Wilson et al. (2021) focused on the product usage data,
this work focuses on the experimental outlooks issued by the
forecasters, and how those outlooks evolve in time. We explore
whether forecasters were able to use WoFS guidance to hone in
on the area of severe weather as the lead time decreased. We
also examine how the descriptive and statistical characteristics
of the outlooks change with decreasing lead time, answering
questions such as the following: Did forecasts become more
precise and confident (e.g., more extreme probability values) as
the lead time decreased? Did the skill increase appreciably?
Was the evolution of the forecasts similar from one hour to the
next, or was there a point in the lead time where forecasts either
improved or deteriorated by a large amount? We also consider
the skill of the underlying WoFS UH probabilities, answering
questions such as: How did the forecasters adjust forecasts com-
pared to the raw model guidance? How skillful was the underly-
ing WoFS guidance? With the increased usage of a Warn-on-
Forecast System, these questions will become increasingly
important in the watch-to-warning time scale.

2. Data and methodology

a. Model configuration and data

Participants in this experiment relied heavily on the WoFS,
which used the WRF-ARW dynamical core (Skamarock et al.
2008). WoFS generated 18-member forecasts in the 0–6-h time
frame on the hour, and in the 0–3-h time frame on the half hour.
WoFS used a 36-member ensemble data assimilation process,
where the full ensemble was updated every 15 min by Gridpoint
Statistical Interpolation–ensemble Kalman filter data assimilation
(Hu et al. 2017) ofWSR-88D radar reflectivity and radial velocity
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data (Wheatley et al. 2015), satellite cloud water path observa-
tions (Jones et al. 2016), and conventional observations when
available. Data assimilation cycling for the first WoFS forecast
of each day, 1900 UTC, began at 1700 UTC, so nine cycles of
data assimilation occurred prior to the forecast being launched
at 1900 UTC. The final forecast used by participants in this
study was launched at 0000 UTC. Boundary conditions were
taken from the 1200 UTC High-Resolution Rapid Refresh
Ensemble (HRRRE; Kalina et al. 2021) forecast. WoFS had
3-km horizontal grid spacing and covered a 900 3 900 km2 grid
each day that focused on the area with the highest potential for
severe weather in the CONUS, which was decided together with
the SFE. A complete description of the WoFS configuration for
spring 2019 is available in Jones et al. (2020).

Participants in this study accessed the WoFS guidance through
a web page (currently found at https://wof.nssl.noaa.gov/realtime/).
After SFE 2019, errors in soil moisture perturbations used to cre-
ate the HRRRE initial conditions and in the assimilation of rota-
tional velocity data were discovered and corrected, and WoFS
cases were rerun and displayed on the web viewer. The soil
moisture error artificially inflated the ensemble spread
in environmental fields such as the temperature and dewpoint,
leading to less accurate environmental fields in individual
members and the potential for less realistic evolution of
storm-scale forecasts. The skill of WoFS storm-scale guidance
was negatively impacted by this soil moisture error, but impacts
were expected to vary with the mesoscale environment and not
significantly impair the ability of the system to provide short-
term prediction of thunderstorms. The rotational velocity assimi-
lation error involved the location of the observational data,
and the most frequent effect was that the observations were
erroneously discarded by quality control algorithms during the
assimilation process. Despite the rerun files being displayed on
the current WoFS web page, the original files that participants
used were archived and forecasts from those files are verified
herein to ensure that participant forecasts are being compared
to model forecasts that were available to them at the time of
the activity.

The ensemble probability of 2–5-km UH exceeding 60 m2 s22

(Skinner et al. 2018) at three different spatial neighborhoods is
verified alongside participant forecasts to determine the skill of
the underlying model guidance that participants used and
whether participants’ forecasts improved upon the guidance.
Hourly 2–5-km UH probabilities serve as a proxy for the
full suite of WoFS guidance, which includes many additional
products. The representativeness of this product will vary
from case-to-case (Wilson et al. 2021; e.g., lower skill antici-
pated for events that may not contain rotating storms), but
2–5-km UH has previously been shown to be a good proxy for
severe weather (Sobash et al. 2011).

Hourly ensemble neighborhood probabilities of UH .

60 m2 s22 were created as follows. First, a 2D field of the
maximum UH from all 5-min instantaneous UH in a given
member was extracted and combined to create an hourly
maximum field for each member. A square neighborhood
maximum filter with radii of either 9, 15, or 27 km (3, 5, and
9 grid points, respectively) was then applied, and the

resultant field was smoothed using a 7.5-km exponential
decay filter with weights of Eq. (1):

g 5 exp 2
x2

r
1

y2

r

( )[ ]
: (1)

These weights from Eq. (1) were then normalized by dividing
each weight by the sum of all of the weights in the 7.5-km
neighborhood. Finally, the probabilities of UH exceeding
60 m2 s22 were determined by how many members exceeded
the threshold at each grid point.

b. Outlook issuance activity

Two different NWS forecasters participated each week during
the 5 weeks of SFE 2019 (29 April–31 May 2019). Each hour
starting from 2000 to 2100 UTC, forecasters issued three fore-
casts of severe weather, grouping together hail, severe convective
wind, and tornado hazards into a single probability. Probabilities
were defined in line with current SPC probabilistic definitions;
namely, as the probability of severe weather within 25 miles of a
point. These three forecasts consisted of 1) a 1-h rolling forecast
valid starting at the end of the current hour, 2) a 4-h rolling
forecast valid starting at the end of forecast 1), and 3) a
targeted 1-h forecast that was always valid from 0100 to 0200
UTC (Fig. 1). The final forecasts were issued between 0000
and 0100 UTC, so forecasts 1 and 3 were the same at that hour.
This study focuses on the targeted 1-h forecast (forecast 3), to
look at the forecast evolution with decreasing lead time rather
than the performance of forecasts at different times throughout
the evening.

Participants began activities at 1700 UTC, with individual
forecast generation beginning at 2100 UTC. Participants each
created four targeted outlooks daily. Prior to 2100 UTC partici-
pants received a briefing from a retired SPC forecaster, met with
WoFS program research scientists to build familiarity with
WoFS, and/or completed an online training module focused
onWoFS guidance concepts, depending on the day (Wilson et al.
2021). From 2000 to 2100 UTC, the two forecasters joined a
larger group of SFE participants that issued the same set of
three forecasts. Beginning with a group activity allowed the par-
ticipants to get comfortable with the data, the drawing tool, and
the ongoing weather via interactions with SFE participants and
facilitators familiar with the weather and guidance.

Participants used a web-based drawing tool to create the
probabilistic outlooks. Participants could draw contours at
probability levels of 5%, 15%, 30%, 45%, and 60%. For the 1-h
forecasts participants were advised to begin with the 15% con-
tour, as the “practically perfect” forecasts (Hitchens et al. 2013)
used in next-day subjective verification applied a small Gaussian
smoother (s 5 40 km). As a result, a single Local Storm Report
(LSR) used for next-day subjective verification resulted in a
practically perfect forecast of 34%; thus a practically perfect
forecast depicting a lone 5% or 15% contour without additional
higher probability contours did not occur. This rule of thumb
also lowered forecaster workload, as in cases with very active
weather participants could focus on the guidance and make the
best forecast possible, rather than worrying about drawing
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FIG. 1. Probabilistic outlooks issued by a single forecaster on 23 May 2019. Probabilities are color filled, and tornado (red inverted trian-
gle), hail (green circle), and wind (blue square) reports are overlaid.

WEATHER AND FORECAS T ING VOLUME 37620

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/06/22 06:43 PM UTC



many low-end probability lines. However, in cases of high uncer-
tainty or low-end risk of severe weather, participants issued some
5% and 15% contours without any higher probabilities. After
the initial hour, participants could load in and modify their prior
outlooks, so they typically did not draw outlooks from scratch
with each forecast issuance.

Cases selected herein are a subset of the full five weeks.
While a research scientist was available throughout the activity
every day, on the first day of the week participants received
more guidance on WoFS and its performance, and were able to
get a feel for issuing short-term probabilistic forecasts of severe
weather; thus, that day is treated as a spinup case and is
excluded from analysis. The evening activity was not conducted
on Fridays, allowing participants to travel home. Finally, occa-
sional WoFS availability issues occurred during the SFE,
resulting in 13 cases examined herein (Table 1). These cases are
examined both in aggregate across the full subset of cases and
for individual cases, though differences in forecaster skill levels
may occur between weeks as new forecasters participate in the
experiment. However, all forecasters are issuing short-term
probabilistic forecasts of severe weather, which are not part of a
typical WFO process and may help decrease skill differences.
Finally, having 10 forecasters enabled us to include forecasters
with a variety of WFO experience and provide a broader sample
than having 2 forecasters complete the exercise throughout the
five weeks.

c. Verification methods and metrics

Experimental outlooks and WoFS UH probabilities were
verified using entries from NCDC’s Storm Data storm event
database (https://www.ncdc.noaa.gov/stormevents/), to get the
most accurate report data available. Reports of severe weather
have noted shortcomings regarding areas of low population
density, overestimation of wind speeds by some observers, and
an underestimation of the spatial extent of some hazards (Witt
et al. 1998; Doswell et al. 2005; Verbout et al. 2006; Trapp et al.
2006; Edwards et al. 2018). Thus, especially when looking at
small time and space windows, verification results are sensitive
to the presence or absence of reports. While next-day subjective
verification used LSRs by necessity due to the low latency of
these reports, objective verification herein can use the more
exhaustive Storm Data entries. Since all forecasts are verified
using the same data, relative performance should be unaffected
by missed or erroneous reports. Storm Data entries were gridded
to the WoFS domain and inflated to match the probabilistic defi-
nition of the forecasts as being for severe weather “within 25 mi
of a point.” Any point within 40 km (24.85 mi) of a report was
considered a “hit” in standard 2 3 2 contingency table terminol-
ogy. Prior to verification, participant outlooks were stored in
Geo JavaScript Object Notation (GeoJSON) format before also
being regridded to the 3-km WoFS grid. No interpolation took
place between contour levels. WoFS UH probabilities were also

verified at the probabilistic thresholds available for participants
to draw (5%, 15%, 30%, 45%, and 60%) for fair comparison of
the WoFS UH and the participant outlooks.

Forecast skill was assessed using traditional contingency-table-
based metrics such as the area under the receiver operating curve
(ROC area; Mason 1982), probability of detection (POD), false
alarm ratio (FAR), success ratio (SR), and critical success index
(CSI). ROC area values range from the worst possible score of
0 to the best possible score of 1, with 0.5 indicating the skill of a
random forecast. ROC area values of $0.7 commonly indicate a
skillful forecast (Buizza et al. 1999). POD ranges from a low
value of 0, indicating that no observations were correctly forecast,
to a high value of 1, indicating that all observations were
correctly forecast. The SR equals 1 minus the FAR, so a score of
0 indicates that no forecasts successfully forecast an observation
(e.g., all forecasts were false alarms), and a score of 1 indicates
that no false alarms occurred. Reliability diagrams provide a
complement to the ROC area which tends to reward POD at the
expense of reliability for rare events such as tornado forecasting
(Gallo et al. 2016).

A neighborhood maximum ensemble probability (Schwartz
and Sobash 2017) approach to the fractions skill score (FSS;
Roberts and Lean 2008) is applied herein. As the observations
are binary (either severe weather happens within 40 km of a
point or it does not) and during the FSS calculation the differ-
ence between the forecasted probabilities and the binary obser-
vations is used rather than the difference between the forecasted
probabilities and a fractional set of observations. This formula-
tion follows Roberts et al. (2020) and Wilson et al. (2021), who
similarly applied the binary observation approach to severe con-
vective storms, and is similar to the approach taken by Schwartz
et al. (2010). Using binary observations of either 0 or 1 rather
than fractional observations calculated by smoothing the reports
avoids the issue of conflating the neighborhood and smoothing
length scales noted by Schwartz and Sobash (2017). While the
values of this score are lower than those calculated using the tra-
ditional FSS and are closely related to the Brier skill score (Brier
1950), avoiding the degrees of freedom associated with observa-
tional smoothing is important due to the small temporal and
spatial scales examined herein. Given the watch-to-warning
scales applied here, determining an optimal smoothing radius for
observations at this scale is beyond the scope of the current
study.

Finally, squared Pearson correlation coefficients (Wilks 2011)
were used to look at the hour-to-hour variation between the
outlooks, and the variation between the forecaster outlooks and
the WoFS UH probabilities. Pearson correlation coefficients
were chosen as they preserve the raw values of the probabilities
during the calculation. Correlations were calculated between
each pair of outlooks issued by an individual forecaster on a
given day (e.g., between outlooks issued at 2100–2200 and
2200–2300 UTC, outlooks issued at 2100–2200 and 2300–0000

TABLE 1. A list of the SFE 2019 cases used in this study.

Week 1 Week 2 Week 3 Week 4 Week 5

30 Apr; 1, 2 May 7, 8 May 14, 15, 16 May 21, 22, 23 May 29, 30 May
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UTC, etc. issued by forecaster 1 on 30 April 2019), and then the
mean, minimum, and maximum correlations were determined
for each pair across the 26 forecaster cases (13 days, with 2 fore-
casters working each day). Only outlooks that contained at least
one contour were considered. Similarly, forecaster outlooks and
WoFS UH probability correlations were computed for each fore-
caster case, but only correlations between outlooks and available
guidance were analyzed (e.g., we excluded the 2100–2200 UTC
forecaster outlook correlation with the 0000 UTC WoFS UH
probabilities, as at 2100–2200 UTC the forecasters could not
access the 0000 UTC guidance).

3. Results

a. Aggregate performance

We first characterize the experimental outlooks across the
entire SFE, grouping together all 26 forecaster cases. An

initial hypothesis was that the polygon sizes would decrease
as lead time decreased and the area impacted by severe
weather became clearer. Another initial hypothesis was that
the probability values of the contours would trend toward
extreme probability values (e.g., more low-end or high-end
values) as lead time decreased, reflecting higher forecaster
confidence in event occurrence or nonoccurrence as the valid
time approached. Another mechanism by which more refined
and confident forecasts might occur with decreasing lead time is
that convection often initiates during the forecasting activities.
Because WoFS rapidly assimilates satellite and radar data, its
forecasts of ongoing storms are much more skillful than precon-
vective initiation, which should aid forecaster confidence.

Starting with the outlook characteristics, the mean number
of 15% contours increased until ∼2 h prior to the forecast valid
time, before decreasing slightly in the final hour (Fig. 2a).
However, the mean number of 30% probability contours

FIG. 2. Mean outlook (a) count and (b) area for targeted outlooks as a function of forecast issu-
ance time. Error bars in (a) extend to 61 standard deviation of the distribution. In (b), solid black
lines represent the median, and black squares show the mean. Outliers are plotted as crosses.
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increased steadily as the lead time decreased. This consistent
increase in higher probability contours may indicate increasing
forecaster confidence, suggesting that participants may have
been pinpointing areas of interest. The highest contour possi-
ble for forecasters to draw, 60%, was drawn relatively infre-
quently (only 5 outlooks out of the 104 outlooks included in
the analysis had a 60% contour). Thus, the small sample size
prevents strong conclusions from being drawn about these
highest contours; however, they are still included in analyses
herein as a useful comparison to WoFS output, which fre-
quently produced probabilities higher than 60%.

Ideally, a decrease in the area of the contours (especially
lower probability contours) would accompany an increase in
the number of higher probability contours, as forecasters
honed in on areas of severe weather and potentially identified
separate areas. A reduction in area could also decrease false
alarm, which forecasters frequently consider when issuing
forecast products (Brooks and Correia 2018).

Indeed, a slight decrease is seen in the 15% (30%) contour
area means (medians), particularly at 2300–0000 and 0000–0100
UTC (Fig. 2b). The greatest decreases in mean area occurred
between 2200–2300 and 2300–0000 UTC issuances for all
contours. Thus, we also found slight support for the hypothesis
that the forecast area decreased with decreasing lead time. The
small magnitude of changes could be in part due to forecasters
loading and adjusting prior forecasts allowing for large consis-
tency hour-to-hour, as well as forecasters performing an unfa-
miliar task (probabilistic convective outlooks), which could
cause fewer changes.

Moving from descriptive characteristics to verification statistics,
we found minor improvements to overall skillful forecast perfor-
mance across lead times (Fig. 3). ROC area and FSS both
increased with decreasing lead time (Figs. 3c,d). Both an increase
in POD and a decrease in FAR at the 5%, 15%, and 30%
contours contributed to the increase in ROC area (Figs. 3a,b).
The 45% contour showed a relatively large decrease in FAR

FIG. 3. (a) POD, (b) FAR, (c) ROC area, and (d) FSS for the targeted outlooks. Colored contours indicate the scores
at different probabilistic thresholds, while black lines indicate metrics that encompass multiple probability levels.
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between the 2200–2300 and 2300–0000 UTC issuance time, while
the 45% contour POD remained consistent throughout. A perfor-
mance diagram (Roebber 2009) shows the increase in CSI from
the 2200–2300 to the 2300–0000 UTC issuance time occurring
across largely the 30% and 45% thresholds (Fig. 4). CSI values
increase from ∼0.18 to ∼0.24 for the 30% contour, an increase of
about a third. Forecasters were able to improve both the POD
and FAR with decreasing lead time at contours up to about 45%.
The 2300–0000 UTC and 0000–0100 UTC forecast issuances are
very similar, showing that the forecasts with ∼2- and ∼1-h lead
time are performing consistently. Reliability diagrams concur with
prior findings in that the statistics showed slight improvement
with later lead times, and show general overforecasting (Fig. 5).
The reliability of the 15% contour remained nearly identical
through all of the forecasts, while the reliability of the 30% and
45% contours increased at later lead times, with the largest
improvement occurring between the 2200–2300 UTC and
2300–0000 UTC forecast issuances.

Given the slight increase in skill of the forecast contours, it
is reasonable to question how much forecasters adjusted their
forecasts hour-to-hour. Forecast continuity and consistent
messaging (Mileti and Sorensen 1990) are important consider-
ations for forecasters and researchers alike (Williams and
Eosco 2021). Some research suggests that users may lose trust in
forecasts if they “flip-flop” between different forecast outcomes
(Weyrich et al. 2019), though not all emerging research of
message consistency within a weather context indicates that the
public is averse to changing guidance (Burgeno and Joslyn 2020).
While the forecasts issued herein were not meant for end-users,
this perception of message consistency means that forecasters

likely still tried to avoid drastic changes to the outlooks unless
they were certain of the change. Forecasters also inherited their
prior outlooks, and in most cases a dramatic shift in forecast
thinking is unlikely. Therefore, the resultant forecasts often did
not change much, and small incremental improvements
occurred with subsequent outlooks. Forecast correlations show
the similarity or difference between forecasts issued at different
hours (Fig. 6). Mean correlation values between forecasts of
adjacent hours were typically around 0.7. The smallest mean
correlations between single hour forecasts occurred between
forecasts issued at 2200 UTC and 2300 UTC, corresponding to
when the largest changes in area and verification scores
occurred. Maximum correlations exceeded 0.87 for all pairs of
forecasts, showing that in some cases forecasters had only minor
changes between the initial and the final outlook issuance time,
despite decreasing lead time. Minimum correlations also showed
that large changes to the forecasts sometimes occurred, such as
on 14 May 2019 (see section 3c).

b. WoFS performance

Given the high hour-to-hour correlation between forecasts
issued during the experimental forecast activity and the small
improvements in skill, we also investigate the underlying WoFS
guidance that forecasters were using through the 2–5-km
UH probabilities. If the WoFS UH probabilities remain
relatively unchanged from run to run, it is reasonable to assume
that forecasters would also keep their outlooks consistent,
particularly prior to convective initiation and maturation.
Besides updating observational data, participants relied heavily
on WoFS guidance, as it provided new ensemble information
every half-hour. An example of the 2–5-km UH probabilities at
the three available neighborhoods for the 23 May 2019 0000
UTCWoFS initialization is shown in Fig. 7.

WoFS 2–5-km UH probabilities generated skillful forecasts
according to the ROC area at the 15- and 27-km neighborhoods,
although the 9-km neighborhood ROC area values hovered
around 0.7 at all initializations except for 2100 UTC (Fig. 8c).
The WoFS POD of the 15% contours remained steady or
increased slightly at shorter lead times for all neighborhoods,
with the largest increases at the 27-km neighborhood (Fig. 8a).
The POD of higher probability contours improved more as lead
time decreased, perhaps due to the repeated assimilation of radar
and satellite data. The larger the neighborhood size, the larger
the POD at all probabilistic thresholds. FAR also increased
slightly with increasing neighborhood size (Fig. 8b), though not as
drastically as the POD did. Most neighborhoods and probability
thresholds show a decrease in POD and an increase in FAR with
the 2200 UTC initialization relative to the 2100 UTC initialization.
This time (2200 UTC) corresponds to 1700 CDT/1800 EDT,
when convective initiation often is occurring and severe weather
is increasing (Krocak and Brooks 2020). This change across the
expected time of convective initiation may pose a challenge for
WoFS, which performs better when storms have been established
long enough for data assimilation to produce accurate storm-scale
analyses in model initial conditions. However, difficulty with
convective initiation does not explain why the 2100 UTC
initialization performs so well in terms of ROC area, POD,

FIG. 4. Performance diagram for the forecaster outlooks across
the entire sample period. Lighter line colors indicate earlier issu-
ance times (i.e., longer lead time), and darker line colors indicate
later issuance times (i.e., shorter lead time). Marker colors indicate
the different probability thresholds.
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and FAR at all neighborhood sizes. ROC area at 2100 UTC
was higher than subsequent lead times at all neighborhoods
(Fig. 8c), perhaps due to increased ensemble spread at longer
lead times decreasing the impact of ensemble underdispersion
(Flora et al. 2019). Forecasters improved upon the ROC area of
all initializations except for at 2100 UTC, and the FSS at 2200
UTC and 2300 UTC (Table 2). Unlike the model performance,
forecaster ROC area and FSS increased consistently with
decreasing lead time, showing that forecasters could correct for
model deficiencies at shorter lead times.

Comparing forecaster performance to WoFS UH probabilities
using a 27-km neighborhood shows how forecasters diverge from
the guidance (Fig. 9). WoFS UH probabilities, like the human
forecasters, perform best at 2300 UTC and 0000 UTC and show
incremental improvement across thresholds. Unlike the human
forecasters, the 2200 UTC initialization performs particularly
poorly. Forecasters generally have a higher POD than WoFS at
the 15% and 30% thresholds, but lower PODs at the 45%
contours. FARs of forecasters at most thresholds are also larger
than the UH probabilities. WoFS UH probabilities have higher
CSIs than forecasters at the 15%, 45%, and 60% thresholds, but
similar CSI scores at the 30% threshold. WoFS has far more
instances of 60% probability than the forecasters which may be
tied to 60% being the highest possible probability that forecasters
could issue, leading them to reserve it for high-confidence sce-
narios with multiple reports likely. Smaller neighborhood
probabilities generated by WoFS have lower skill scores (not
shown).

Reliability diagrams of the WoFS UH probabilities show
underforecasting at the lower probability thresholds of 5% and
15%, and overforecasting at probability thresholds of 45% and
60% (Figs. 10a–c). The 30% threshold shows mixed results, with
the 15-km neighborhood probabilities (Fig. 10b) having nearly
equal observed and predicted frequencies. Thus, the forecasters
could improve upon the guidance at higher probability thresholds
by improving the FAR that resulted from the guidance overfore-
casting. Initializations show no clear trend in reliability. Larger
neighborhoods are the most reliable at 5% and 15% thresholds,
while the smaller neighborhoods underforecast at those thresh-
olds. All neighborhoods show a general increase in the observed
frequency as the forecast probability increases. At the 45% and
60% probability thresholds, the smallest neighborhood is the
most reliable, despite still overforecasting. The inset relative
frequency plots showWoFS’s ability to forecast higher probabili-
ties than the forecasters, as the bin with the 60%1 probabilities
has more points than the next-smallest bin. As expected, the
number of points in that largest bin increases as the initialization
time decreases, as WoFS hones in on and becomes more confi-
dent in the area that will see severe weather.

From the prior analyses, it becomes clear that there was
more difference in the performance of the WoFS forecast and
the forecaster outlook than there was between two sets of
forecaster outlooks (e.g., WoFS guidance initialized at 2300
UTC and forecaster outlooks issued at 2300 UTC differed
more than forecaster outlooks issued at 2200 UTC and 2300
UTC). The mean and maximum correlations between the

FIG. 5. Reliability diagram for all experimental forecaster outlooks issued across SFE 2019.
The dashed line indicates perfect reliability. Inset bar chart shows the number of points in each
bin. Error bars encompass the 95% confidence interval.
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guidance and the forecaster outlooks at each time (Fig. 11)
further demonstrate the lower correlations relative to hour-
to-hour forecaster outlooks (Fig. 6). We also surmise that a
higher correlation between WoFS guidance and forecaster
outlooks corresponds to the forecaster using that product
more heavily.

Based on the expectation that guidance with a smaller neigh-
borhood is more appropriate in the shorter-term and guidance
with a larger neighborhood is more appropriate in the longer
term, we hypothesized that higher correlations with the 9-km
WoFS neighborhood probabilities would occur with later fore-
caster outlooks, while the higher correlations with the 27-km
WoFS probabilities would occur with earlier forecaster out-
looks. Instead, we see that the mean correlations between the
forecaster outlooks and guidance at the same time decreases at
all neighborhoods as the lead time decreases.

Decreased correlations may be partially due to the increasing
importance of observations as the event approaches. Though
WoFS assimilates observations, displacement errors still occur

in the guidance, particularly for newly initiated storms, and
these errors will become more apparent to forecasters as lead
time to the outlook period decreases. Accounting for those
errors would drop the mean and maximum correlations at the
final hour (Fig. 11). Mean correlations were largest for the
27-km neighborhood and smallest for the 9-km neighborhood,
perhaps indicating that forecasters were drawing areas that
were closer in size to the larger neighborhood probabilities.
Given that the probability definition for the outlooks was the
probability of severe weather within 24.85 miles (40 km) of a
point, the size of the forecaster outlooks should more closely
match the larger neighborhood probabilities generated by
WoFS. The maximum correlation for any forecaster-case shows
the highest correlations between outlooks and the 9-km and the
27-km WoFS probabilities, suggesting that forecasters relied on
those two products more than the 15-km guidance. The lower
correlation with the 15-km guidance may be due to its radius
being between two extremes; forecasters may have felt that the
9- and 27-km guidance provided a sufficient envelope for their

FIG. 6. Minimum (blues), mean (purples), and
maximum (reds) correlation between forecasts
issued at different times by the same forecaster on
the same day. The r2 value is overlaid in the text,
and the size and shading of each square is propor-
tional to the r2 value.
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analyses, or may have prioritized the largest and smallest radius
when needing to issue forecasts in a relatively short amount of
time.

Mean correlation values with prior forecasts also tended to
increase in the later forecasts (e.g., the 2100 UTC 9-km WoFS
guidance was on average more correlated with the 2200 UTC
forecaster outlook than with the 2100 UTC forecaster out-
look). This pattern of increased correlation with guidance
from prior WoFS initializations may be due to many factors.
Forecasters might be building upon prior WoFS runs as they
gain information about feature consistency and certainty. If a
feature is present in roughly the same location for multiple
runs and a forecaster highlights it in their outlook, and
excludes other, less consistent features, the correlation with

prior outlooks depicting the consistent feature could increase.
Persistent run-to-run features in WoFS guidance are likely to
originate from features consistently assimilated into the initial
conditions, rather than simply initiated by the ensemble.
Spurious features in individual WoFS members are also likely
mitigated by analyzing the ensemble probabilities. WoFS
forecasts also have some latency, so forecasters may build
outlooks largely off of the prior hour’s guidance and then
make small adjustments based on the current run when it
becomes available.

c. Case performance

Given the small variations in performance when collectively
examining the SFE cases, we next examine individual cases,

FIG. 7. Visualizations seen by the forecasters,
indicating the probability of 2–5-kmUH. 60 m2 s22

using a (a) 9-, (b) 15-, and (c) 27-km neighborhood,
valid from 0100 to 0200 UTC 16May 2019.
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to determine whether the aggregation of cases masked differ-
ences in performance under certain circumstances. For these
analyses, the two forecasters for each case are grouped
together.

The ROC areas (Fig. 12a) vary between the WoFS UH
probabilities or the forecaster outlooks performing best,
although whether forecasters perform better or worse than
the guidance is typically consistent on any given day. In some
cases, like 30 April, 21 May, and 23 May, forecasters improve
on the WoFS guidance at all neighborhoods. In other cases,
such as on 1 May, 14 May, and 16 May, the forecaster

outlooks and the guidance perform similarly. In two cases,
7 May and 8 May, the forecaster outlooks have lower ROC
areas than all guidance for the first two forecasts, but improve
for the 2300–0000 UTC and 0000–0100 UTC issuances and
perform similarly to or slightly worse than the WoFS UH
probabilities. In many of the cases, the ROC area of forecaster
outlooks peaks at the 2300 UTC issuance before declining. In
a few cases (16 May and 30 May), ROC areas improve drasti-
cally at the final forecast issuance. Both of these effects are
likely due to forecasters extrapolating existing storms, honing
in on the area likely to be impacted, and becoming more

FIG. 8. As in Fig. 3, but for WoFSUH probabilities with neighborhoods of 9 km (dotted lines), 15 km (dashed lines),
and 27 km (solid lines). In (a) and (b) the 15-km neighborhood was excluded for ease of readability; values fell
between the 9- and 27-km neighborhoods at all probability thresholds.

TABLE 2. ROC area and FSS for the WoFS initializations and forecaster outlooks over the course of all SFE 2019.

ROC area 2100 UTC 2200 UTC 2300 UTC 0000 UTC FSS 2100 UTC 2200 UTC 2300 UTC 0000 UTC

9-km WoFS 0.7248 0.6924 0.6979 0.6931 9-km WoFS 0.1629 0.1422 0.1659 0.1730
15-km WoFS 0.7656 0.7363 0.7441 0.7424 15-km WoFS 0.2376 0.2037 0.2403 0.2542
27-km WoFS 0.8107 0.7858 0.7992 0.8070 27-km WoFS 0.3254 0.2797 0.3345 0.3553
Forecasters 0.7855 0.8171 0.8378 0.8549 Forecasters 0.2978 0.3125 0.3437 0.3497
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confident in the occurrence of severe weather. WoFS guidance
consistently had higher ROC areas at larger neighborhoods,
but did not always have increasing ROC areas as lead time
decreased (Fig. 12a, grayscale markers). In five cases, 2100

UTC WoFS guidance ROC area was higher than 0000 UTC
(e.g., 30 April, 15 May). Some of these cases saw WoFS UH
probabilities increase for storms that did not produce severe
reports, while others had a displacement in the simulated
storms relative to observed storms. In some weakly forced
cases, such as on 2 May or 30 May, the later iterations of the
WoFS perform better once they are able to assimilate ongoing
convection.

FSS performance (Fig. 12b) frequently mirrors the ROC
area, though in some cases the FSS is better able to weight
increasing forecaster confidence and increased probabilities.
This is illustrated on 14 May, when forecasters correctly
adjusted their probabilities northward and increased the prob-
abilities as lead time decreased [see section 3c(2)]. While the
ROC area for that case decreased slightly from 2200 UTC
onward, the FSS shows steady improvement. For WoFS UH
probabilities, particularly using the largest neighborhood, FSS
scores often increase as lead time decreases, though some
cases show mixed results between initializations. FSS shifts
are likely due to increasing probabilities from the ensemble as
lead time decreases and the ensemble members coalesce
around the paths and severity of individual storms.

Case performance showed some link to the number of
reports, as four of the five days with ten or more reports had
high ROC areas compared to the other cases (Fig. 12a;
30 April, 7 May, 15 May, and 22 May). Cases with fewer
reports generally had lower ROC areas, but some of these
cases had large improvement in ROC area as the event
approached, particularly for the forecasters (e.g., 23 May,

FIG. 9. A performance diagram showing the WoFS UH probabil-
ity performance using the 27-km neighborhood (triangles; lines),
with forecaster performance from Fig. 4 plotted for reference.

FIG. 10. Reliability of WoFS probabilities of UH . 60 m2 s22 at different neighborhoods. Each point corresponds with a probabilistic
threshold that forecasters could draw (5%, 15%, 30%, 45%, and 60%), and error bars encompass the 95% confidence interval. Times are
WoFS initialization times.
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21 May, 30 May). Whether the guidance or the forecaster
outlooks performed better in terms of ROC area was mixed,
with experimental outlooks scoring consistently better on
three of the five days with 101 reports and mixed perfor-
mance from the forecaster outlooks on 2 of the 5 days with
101 reports. FSS showed a general decrease as the number of
reports decreased (Fig. 12b), although 16 May was one of the
worst-performing cases in terms of FSS despite having the
second-highest number of reports. Generally, the WoFS UH
probabilities at the highest neighborhood and the forecaster
outlooks had similar FSS scores for cases with more than
10 reports, although both the WoFS UH probabilities and the
forecaster outlooks had one case out of these five that
performed best throughout the case.

Performance diagrams for 21 May (Fig. 13) show the
emphasis forecasters place on capturing severe weather in at
least the 15% contour, which maintains high POD throughout

the case. Forecaster performance increases in the 2300–0000
UTC (Fig. 13c) and 0000–0100 UTC (Fig. 13d) outlooks
relative to the 2100–2200 UTC (Fig. 13a) and 2200–2300
UTC (Fig. 13b) outlooks, with improved POD and SR.
WoFS UH probabilities show no clear trend as the initiali-
zations progress, as the main area of cells was depicted too far
west, and probabilities over another report site decreased as
time went on. At 0000 UTC, the location error had decreased,
though the probability magnitude error had not, leading to
small improvements relative to 2200 UTC and 2300 UTC.
However, the forecasters maintained high probabilities where
WoFS decreased UH probabilities, and introduced higher
probabilities closer to the reports, though they also suffered
from some location error. Better performance from the fore-
casters for this case show that the aggregated statistics may
mask days with marked improvement in the forecaster out-
looks as lead time decreases.

FIG. 11. Mean (purples) and maximum (reds) correlations between all of the experimental forecasts issued by
forecasters and raw WoFS guidance for all days and issuance times. Correlations are only shown for forecasts
that would have been available to forecasters at the given issuance time.
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Finally, we will examine three example cases (Fig. 14)
selected based on ROC area and FSS: 1) 15 May, the best-
performing case in terms of forecaster skill, 2) 14 May, one of
the consistently worst-performing cases,1 and 3) 30 May, a
case with large improvement in the final forecast issuance.

1) 15 MAY 2019

On 15 May 2019, the focus for convection was a cold front
moving from North Dakota into Minnesota, accompanied by a
subtle upper-level shortwave trough. Early light precipitation
across northern North Dakota made the northern extent of
severe convection uncertain. Convection initiated on the front
by 2100 UTC, becoming organized and cellular by 2200 UTC.
Severe hail initially developed in the southern storm by 2300
UTC, and hail reports occurred throughout the line by 0000
UTC. The northern part of the line, closer to the stronger
dynamical forcing, grew upscale and produced both hail and
wind reports between 0100 and 0200 UTC, including an
estimated significant wind gust [$75 mph (33.5 m s21)]. The
southern storms, however, began to weaken and dissipate by
the period of interest. Since storms had been producing severe
reports prior to 0100–0200 UTC, this case had relatively high pre-
dictability. Forecasters highlighted a narrow corridor (Fig. 14a),

introducing higher probabilities with decreasing lead time.
Initial focus was on the southern storms, perhaps due to
limited instability in northern North Dakota. However, as
the northern storms began to grow upscale, forecasters
increased their northern probabilities, with one forecaster
introducing a 60% contour in the 0000–0100 UTC outlook
that almost perfectly encompassed the severe reports.
WoFS indicated some high UH probabilities in eastern
North Dakota at the 2100 UTC initialization, but with the
2200 UTC initialization probabilities decreased and were
widespread along the front. The 2300 UTC and 0000 UTC guid-
ance emphasized the southern storms, depicting UH probabilities
exceeding 70%. The consistently high probabilities issued by
forecasters and the correct shift to focus on the northern storms
decreased the correlation with WoFS guidance over time. In this
case, the lower correlation at later initialization times showed the
forecaster correcting for WoFS underdoing the severity of the
northern storms as shown by the probability of UH. 60 m2 s22.

2) 14 MAY 2019

Two areas of interest occurred within the WoFS domain on
14 May 2019 (Fig. 14b). Ongoing convection across Iowa at
1300 UTC created forecast questions about air mass recovery
and remnant boundary placement, which could provide a
focus for later severe weather. While most of Iowa remained
clear of additional convection, storms initiated between 2300
and 0000 UTC over northern Missouri and quickly produced
severe hail from 0000 to 0400 UTC, including several reports
between 0100 and 0200 UTC. A second area of convection

FIG. 12. (a) ROC area and (b) FSS for the forecasters (blues) and WoFS UH guidance (grays) for each case in the
study. Earlier initializations or issuance times in each case are lighter colors, while later initializations or issuance times
are in darker colors. The size of the markers indicating the WoFS guidance corresponds to the neighborhood of the
probability, with the smallest symbols indicating the 9-km neighborhood probabilities and the largest symbols indicat-
ing the 27-km neighborhood probabilities. The orange text at the top of the graphic indicates the number of reports
within the domain for each day.

1 29 May 2019 also performed very poorly, but was a low-end
case with only one contour issued at one issuance time by a single
forecaster. One wind report occurred. Thus, we focus on a poorly
performing case with more reports and probability contours.
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initiated in southwestern Minnesota and propagated southward
into Iowa, producing two hail reports between 0000 and 0100
UTC before dissipating. WoFS UH probabilities highlighted
both of these areas starting with the 2200 UTC run. The 2100
UTC WoFS initialization had low UH probabilities (,40%)
across Missouri and no probabilities in Iowa. In the 2200 UTC
initialization, probabilities increased across Missouri, but south
of the eventual hail reports. Low probabilities first appeared in
Iowa in this initialization. The 2300 UTC and 0000 UTCWoFS
had higher UH probabilities, and shifted the Missouri probabil-
ities northward, closer to the observed hail reports. Outlook
correlations with WoFS guidance were lowest at 2100 UTC,
increased at 2200 and 2300 UTC, and declined at 0000 UTC,
with a larger decline at smaller neighborhoods. Overall,

correlations between forecaster outlooks and WoFS guidance
were lower than 15 May 2019, perhaps reflecting that this event
was difficult to forecast for humans and model guidance alike.
It may also be more difficult to improve upon model guidance
when predictability is lower. A higher correlation was not nec-
essarily optimal in this case, as WoFS introduced probabilities
of severe weather in Iowa, where the convection produced no
severe weather during the time of interest.

3) 30 MAY 2019

The 30 May 2019 event provided three areas of focus
(Fig. 14c). The first was a cold front moving across the eastern
CONUS, with the main forecast challenge for participants being

FIG. 13. Performance diagram for forecaster outlooks and WoFS guidance on 21 May 2021, issued or initialized at
(a) 2100, (b) 2200, (c) 2300, and (d) 0000 UTC. The connected square and circle markers represent the two forecasters
working this case, and the triangles indicate WoFS UH probabilities.
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FIG. 14. Forecast evolution of one forecaster’s outlooks valid 0100–0200 UTC for (a) 15 May 2019, (b) 14 May 2019, and
(c) 30 May 2019. Overlaid text is the correlation of the forecaster’s outlook with WoFS guidance generated using a 9-km neighbor-
hood (purple), 15-km neighborhood (orange), and 27-km neighborhood (brown). Tornado (red inverted triangle), hail (green cir-
cle), and wind (blue square) reports are overlaid.
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when the convection would move offshore. Two convective lines
developed; one across Maryland, Pennsylvania, and northern
Virginia that was largely synoptically driven, and one across
North Carolina that developed off of the Appalachian Moun-
tains. The northern band moved offshore at 2300 UTC, concur-
rent with the southern band beginning to produce severe wind
reports. Participants correctly diagnosed the northern band as
being primarily offshore from 0100 to 0200 UTC, drawing low
probabilities across Maryland and Delaware. The southern band
was thought to be displaced sufficiently from the better dynamics
to remain subsevere; however, it did produce two wind reports
between 0100 and 0200 UTC. Forecasters and WoFS UH proba-
bilities did not anticipate this threat until late, with forecasters
issuing a 15% contour in their 0000–0100 UTC outlooks encom-
passing the wind report and ∼50% probabilities occurring in the
0000 UTC WoFS. Capturing these reports resulted in a high
ROC area and increased FSS for the final initialization in Fig. 12,
as the POD increased.

The final convection of interest was a lone supercell in
northern Virginia, which tracked across the state and produced
reports from ∼2130 to 0010 UTC. This storm was well
organized, and determining if it would remain severe until
it moved offshore was a large forecast challenge. WoFS
guidance from the 2100–2300 UTC initializations showed
high UH probabilities continuing until the storm moved
offshore, with decreased probabilities in the 0000 UTC
run. However, the storm rapidly began to weaken after
0010 UTC, and it produced no reports during the time of
interest. As such, forecasters’ high probabilities issued at
2300–0000 UTC were a false alarm. Correlations with
WoFS UH probabilities were highest at 2300 UTC, as
forecasters agreed with the high probabilities in WoFS
guidance at this time.

4. Conclusions

During the 2019 SFE, two forecasters issued experimental
forecasts valid from 0100 to 0200 UTC using guidance from
the experimental Warn-on-Forecast System (WoFS). The aim
was to explore forecast skill in the time frame between severe
convective watches and severe convective warnings during
the peak of the spring convective season. Trends in forecaster
contour count, area, and skill showed small changes when
looking at the full duration of the SFE (Figs. 2, 3), with ROC
area and FSS increasing incrementally in forecaster outlooks
as lead time decreased, driven by a higher POD and a lower
FAR. The largest changes in outlook skill were between the
2200–2300 and the 2300–0000 UTC issuances, with two to
three hours of lead time (Figs. 4, 5). However, forecasters did
incrementally adjust and improve their outlooks, as seen
through correlations between forecaster outlooks (Fig. 6).

The relatively small changes in skill of the forecaster outlooks
may be linked to the performance of the underlying WoFS
2–5-km UH probabilities, which also showed small improve-
ments in performance as lead time decreased (Fig. 8). For ROC
area and FSS, the skill of WoFS UH probabilities at 2100 and at
0000 UTC were very similar. This result is somewhat surprising
given WoFS’s advanced data assimilation, although all forecasts

(even at long lead times) were skillful and forecasters were
frequently unable to improve uponWoFS forecasts, particularly
at high probabilities (Fig. 9). Forecasters did especially well at
increasing the POD of low probability contour levels relative to
WoFS guidance.

Individual cases vary, encompassing both cases where forecast-
ers performed better than WoFS guidance and where forecasters
performed similarly to WoFS guidance. Generally, forecasters
improved as lead time decreased more consistently than the
WoFS UH probabilities did on a case-by-case basis (Fig. 12, 13),
showing that forecasters can compensate for potentially errone-
ous aspects of WoFS guidance. Three case studies illustrate dif-
ferent ways the forecasts evolved, showing the variation that
participants encountered during SFE 2019 (Fig. 14).

To answer the questions raised in the introduction, forecasts
seemed to “hone in” slightly, with higher probability contours
and smaller areas as lead time decreased. However, forecasts in
some cases (e.g., 30 May 2019), honed in by decreasing the
probabilities due to increased certainty that severe weather
would not occur. Forecaster outlook skill increased slightly and
consistently as lead time decreased, while the skill of the WoFS
UH probabilities varied with time. The largest changes in skill
seemed to occur between the 2200 UTC guidance/forecasts and
the 2300 UTC guidance/forecasts, perhaps due to timing rela-
tive to the most widespread convective initiation, which most
frequently occurred between 2000 and 2200 UTC in our set of
cases. Finally, forecasters frequently blended the full suite of
WoFS guidance with observations of the mesoscale environ-
ment and ongoing convection. These results show that WoFS
can help forecasters to issue skillful short-term forecasts, partic-
ularly given that forecasters were focusing heavily on WoFS
guidance during this experimental task.

Results from this work suggest that WoFS will be a valuable
tool for operational forecasters issuing short-term forecasts of
severe convective hazards, particularly since its “long-range”
forecasts were quite skillful. While many prior studies of WoFS
have showed skill in the 0–3-h time range, this work shows skill
extending beyond those first three hours. This work also shows
how forecasters can improve upon the guidance in many cases.
Since the Forecasting a Continuum of Environmental Threats
paradigm (FACETs; Rothfusz et al. 2018) emphasizes probabil-
istic guidance, demonstrating skillful watch-to-warning scale
probabilistic forecasts shows that forecasters have the ability to
issue skillful and reliable probabilities at these temporal and
spatial scales.

Additional work in subsequent SFEs has looked at separating
these “all-hazard” forecasts into individual hazard forecasts of
tornado, hail, and wind based onWoFS guidance. While experi-
mental forecasts in SFE 2020 and SFE 2021 have taken place
over one or two hours and not over the course of an entire
evening, they may still provide insight into which hazards
WoFS is particularly beneficial for. Additional work in SFE
2021 had forecasters issue short-term hourly probabilistic haz-
ard forecasts with and without WoFS. While subjective ratings
of those forecasts showed that forecasts using WoFS performed
better than those not using WoFS for each hazard (Clark et al.
2021b), objective verification work remains. Finally, the full
scope of this activity included the verification work discussed

WEATHER AND FORECAS T ING VOLUME 37634

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/06/22 06:43 PM UTC



here and an examination of forecaster product usage in Wilson
et al. (2021). Future work of this type could include semistruc-
tured interviews or focus groups asking forecasters about their
forecast process. Activities taking place in NOAA’s Hazardous
Weather Testbed frequently have the unique potential to answer
questions about model guidance, forecast products, and fore-
caster usage of products. A multidisciplinary approach creates a
more thorough understanding of experimental products than a
single approach, and we recommend further research efforts that
concurrently examine the applications, forecaster processes, and
outcomes resulting from forecasters’ use of newly developed
products, tools, and guidance.

Acknowledgments. We thank the participants of this experi-
ment for their efforts, as well as all those who contributed to
SFE 2019 and the evening activity. This includes evening facili-
tators: Drs. Corey Potvin, Kimberly Hoogewind, Nusrat Yussof,
and Derek Stratman. Funding for this work was provided by
NOAA/Office of Oceanic and Atmospheric Research under
NOAA–University of Oklahoma Cooperative Agreement
NA16OAR4320115, U.S. Department of Commerce (BTG,
KAW, JC, KK, PS, BR). Authors PH and AJC completed this
work as part of regular duties at the federally funded NOAA
National Severe Storms Laboratory. Author ILJ completed this
work as part of regular duties at the federally funded NOAA
Storm Prediction Center. Finally, we thank four anonymous
reviewers, whose comments helped to improve the clarity of
the manuscript and the visualization of the figures.

Data availability statement. De-identified datasets (e.g.,
experimental outlook forecasts) stored internally at NSSL may
be shared upon request and free of charge following a reasonable
period of time for data analysis and publishing (approximately
two years). Warn-on-Forecast System (WoFS) model output is
also stored internally at NSSL and may be shared upon request.
Reports of severe weather used for verification were obtained
from the Storm Data public page: https://www.ncdc.noaa.gov/
stormevents/.

REFERENCES

Adams-Selin, R. D., A. J. Clark, C. J. Melick, S. R. Dembek,
I. L. Jirak, and C. L. Ziegler, 2019: Evolution of WRF-
HAILCAST during the 2014–16 NOAA/Hazardous Weather
Testbed Spring Forecasting Experiments. Wea. Forecasting,
34, 61–79, https://doi.org/10.1175/WAF-D-18-0024.1.

Alexander, C., and Coauthors, 2020: Rapid Refresh (RAP) and
High Resolution Rapid Refresh (HRRR) model development.
30th Conf. on Weather Analysis and Forecasting (WAF)/26th
Conf. on Numerical Weather Prediction (NWP), Boston, MA,
Amer. Meteor. Soc., 8A.1, https://rapidrefresh.noaa.gov/pdf/
Alexander_AMS_NWP_2020.pdf.

Benjamin, S. G., and Coauthors, 2016: A North American hourly
assimilation and model forecast cycle: The Rapid Refresh.
Mon. Wea. Rev., 144, 1669–1694, https://doi.org/10.1175/
MWR-D-15-0242.1.

Brier, G. W., 1950: Verification of forecasts expressed in terms of
probability. Mon. Wea. Rev., 78, 1–3, https://doi.org/10.1175/
1520-0493(1950)078,0001:VOFEIT.2.0.CO;2.

Brooks, H. E., and J. Correia Jr., 2018: Long-term performance
metrics for National Weather Service tornado warnings. Wea.
Forecasting, 33, 1501–1511, https://doi.org/10.1175/WAF-D-
18-0120.1.

Buizza, R., A. Hollingsworth, F. Lalaurette, and A. Ghelli, 1999:
Probabilistic predictions of precipitation using the ECMWF
ensemble prediction system. Wea. Forecasting, 14, 168–189,
https://doi.org/10.1175/1520-0434(1999)014,0168:PPOPUT.
2.0.CO;2.

Burgeno, J. N., and S. L. Joslyn, 2020: The impact of weather
forecast inconsistency on user trust. Wea. Climate Soc., 12,
679–694, https://doi.org/10.1175/WCAS-D-19-0074.1.

Clark, A. J., and Coauthors, 2020: A real-time, simulated forecast-
ing experiment for advancing the prediction of hazardous con-
vective weather. Bull. Amer. Meteor. Soc., 101, E2022–E2024,
https://doi.org/10.1175/BAMS-D-19-0298.1.

}}, and Coauthors, 2021a: A real-time, virtual spring forecasting
experiment to advance severe weather prediction. Bull. Amer.
Meteor. Soc., 102, E814–E816, https://doi.org/10.1175/BAMS-
D-20-0268.1.

}}, and Coauthors, 2021b: Spring forecasting experiment 2021
preliminary findings and results. Experimental Forecast
Program, NOAA Hazardous Weather Testbed, 86 pp.,
https://hwt.nssl.noaa.gov/sfe/2021/docs/HWT_SFE_2021_
Prelim_Findings_FINAL.pdf.

Demuth, J. L., and Coauthors, 2020: Recommendations for devel-
oping useful and usable convection-allowing model ensemble
information for NWS forecasters. Wea. Forecasting, 35,
1381–1406, https://doi.org/10.1175/WAF-D-19-0108.1.

Done, J., C. A. Davis, and M. Weisman, 2004: The next generation
of NWP: Explicit forecasts of convection using the Weather
Research and Forecasting (WRF) Model. Atmos. Sci. Lett., 5,
110–117, https://doi.org/10.1002/asl.72.

Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatologi-
cal estimates of daily local nontornadic severe thunderstorm
probability for the United States. Wea. Forecasting, 20, 577–595,
https://doi.org/10.1175/WAF866.1.

Edwards, R., J. T. Allen, and G. W. Carbin, 2018: Reliability and
climatological impacts of convective wind estimations. J. Appl.
Meteor. Climatol., 57, 1825–1845, https://doi.org/10.1175/JAMC-
D-17-0306.1.

Flora, M. L., P. S. Skinner, C. K. Potvin, A. E. Reinhart,
T. A. Jones, N. Yussouf, and K. H. Knopfmeier, 2019:
Object-based verification of short-term, storm-scale probabilis-
tic mesocyclone guidance from an experimental Warn-on-
Forecast system. Wea. Forecasting, 34, 1721–1739, https://doi.
org/10.1175/WAF-D-19-0094.1.

}}, C. K. Potvin, P. S. Skinner, S. Handler, and A. McGovern,
2021: Using machine learning to generate storm-scale
probabilistic guidance of severe weather hazards in the
Warn-on-Forecast system. Mon. Wea. Rev., 149, 1535–
1557, https://doi.org/10.1175/MWR-D-20-0194.1.

Gallo, B. T., A. J. Clark, and S. R. Dembek, 2016: Forecasting
tornadoes using convection-permitting ensembles. Wea. Fore-
casting, 31, 273–295, https://doi.org/10.1175/WAF-D-15-0134.1.

}}, and Coauthors, 2017: Breaking new ground in severe
weather prediction: The 2015 NOAA/Hazardous Weather
Testbed Spring Forecasting Experiment. Wea. Forecasting,
32, 1541–1568, https://doi.org/10.1175/WAF-D-16-0178.1.

}}, and Coauthors, 2021: Exploring convection-allowing model
evaluation strategies for severe local storms using the finite-
volume cubed-sphere (FV3) model core. Wea. Forecasting,
36, 3–19, https://doi.org/10.1175/WAF-D-20-0090.1.

G A L LO E T A L . 635MAY 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/06/22 06:43 PM UTC

https://www.ncdc.noaa.gov/stormevents/
https://www.ncdc.noaa.gov/stormevents/
https://doi.org/10.1175/WAF-D-18-0024.1
https://rapidrefresh.noaa.gov/pdf/Alexander_AMS_NWP_2020.pdf
https://rapidrefresh.noaa.gov/pdf/Alexander_AMS_NWP_2020.pdf
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/WAF-D-18-0120.1
https://doi.org/10.1175/WAF-D-18-0120.1
https://doi.org/10.1175/1520-0434(1999)014<0168:PPOPUT>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0168:PPOPUT>2.0.CO;2
https://doi.org/10.1175/WCAS-D-19-0074.1
https://doi.org/10.1175/BAMS-D-19-0298.1
https://doi.org/10.1175/BAMS-D-20-0268.1
https://doi.org/10.1175/BAMS-D-20-0268.1
https://hwt.nssl.noaa.gov/sfe/2021/docs/HWT_SFE_2021_Prelim_Findings_FINAL.pdf
https://hwt.nssl.noaa.gov/sfe/2021/docs/HWT_SFE_2021_Prelim_Findings_FINAL.pdf
https://doi.org/10.1175/WAF-D-19-0108.1
https://doi.org/10.1002/asl.72
https://doi.org/10.1175/WAF866.1
https://doi.org/10.1175/JAMC-D-17-0306.1
https://doi.org/10.1175/JAMC-D-17-0306.1
https://doi.org/10.1175/WAF-D-19-0094.1
https://doi.org/10.1175/WAF-D-19-0094.1
https://doi.org/10.1175/MWR-D-20-0194.1
https://doi.org/10.1175/WAF-D-15-0134.1
https://doi.org/10.1175/WAF-D-16-0178.1
https://doi.org/10.1175/WAF-D-20-0090.1


Gallus, W. A., 2010: Application of object-based verification
techniques to ensemble precipitation forecasts. Wea. Forecasting,
25, 144–158, https://doi.org/10.1175/2009WAF2222274.1.

Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert,
2009: Intercomparison of spatial forecast verification methods.
Wea. Forecasting, 24, 1416–1430, https://doi.org/10.1175/2009
WAF2222269.1.

Hitchens, N. M., H. E. Brooks, and M. P. Kay, 2013: Objective
limits on forecasting skill of rare events. Wea. Forecasting, 28,
525–534, https://doi.org/10.1175/WAF-D-12-00113.1.

Hu, M., G. Ge, H. Shao, D. Stark, K. Newman, C. Zhou, J. Beck,
and X. Zhang, 2017: Gridpoint statistical interpolation user’s
guide version 3.6. Developmental Testbed Center, 158 pp.,
https://dtcenter.org/com-GSI/users/docs/.

Johnson, A., X. Wang, F. Kong, and M. Xue, 2013: Object-based
evaluation of the impact of horizontal grid spacing on con-
vection-allowing forecasts. Mon. Wea. Rev., 141, 3413–3425,
https://doi.org/10.1175/MWR-D-13-00027.1.

}}, }}, Y. Wang, A. Reinhart, A. J. Clark, and I. L. Jirak,
2020: Neighborhood- and object-based probabilistic verifica-
tion of the OU MAP ensemble forecasts during 2017 and
2018 Hazardous Weather Testbeds. Wea. Forecasting, 35,
169–191, https://doi.org/10.1175/WAF-D-19-0060.1.

Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis,
and R. Palikonda, 2016: Storm-scale data assimilation and
ensemble forecasting with the NSSL experimental Warn-on-
Forecast System. Part I: Combined radar and satellite assimi-
lation. Wea. Forecasting, 31, 297–327, https://doi.org/10.1175/
WAF-D-15-0107.1.

}}, P. Skinner, K. Knopfmeier, E. Mansell, P. Minnis, R. Palikonda,
and W. Smith Jr., 2018: Comparison of cloud microphysics
schemes in a Warn-on-Forecast System using synthetic satellite
objects. Wea. Forecasting, 33, 1681–1708, https://doi.org/10.1175/
WAF-D-18-0112.1.

}}, and Coauthors, 2020: Assimilation of GOES-16 radiances and
retrievals into the Warn-on-Forecast System. Mon. Wea. Rev.,
148, 1829–1859, https://doi.org/10.1175/MWR-D-19-0379.1.

Kain, J. S., and Coauthors, 2008: Some practical considerations
regarding horizontal resolution in the first generation of opera-
tional convection-allowing NWP. Wea. Forecasting, 23, 931–952,
https://doi.org/10.1175/WAF2007106.1.

}}, S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and
R. A. Sobash, 2010: Extracting unique information from
high-resolution forecast models: Monitoring selected fields
and phenomena every time step. Wea. Forecasting, 25,
1536–1542, https://doi.org/10.1175/2010WAF2222430.1.

Kalina, E. A., I. Jankov, T. Alcott, J. Olson, J. Beck, J. Berner,
D. Dowell, and C. Alexander, 2021: A progress report on
the development of the High-Resolution Rapid Refresh
ensemble. Wea. Forecasting, 36, 791–804, https://doi.org/
10.1175/WAF-D-20-0098.1.

Krocak, M. J., and H. E. Brooks, 2020: An analysis of subdaily
severe thunderstorm probabilities for the United States. Wea.
Forecasting, 35, 107–112, https://doi.org/10.1175/WAF-D-19-
0145.1.

Mason, I., 1982: A model for assessment of weather forecasts.
Aust. Meteor. Mag., 30, 291–303.

Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002:
Does increasing horizontal resolution produce more
skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407–430,
https://doi.org/10.1175/1520-0477(2002)083,0407:DIHRPM.

2.3.CO;2.

Mileti, D. S., and J. H. Sorensen, 1990: Communication of
emergency public warnings: A social science perspective
and state-of-the-art assessment. Tech. Rep. ORNL-6609,
Oak Ridge National Laboratory, 159 pp., https://doi.org/
10.2172/6137387.

Potvin, C. K., and Coauthors, 2019: Systematic comparison of con-
vection-allowing models during the 2017 NOAA HWT Spring
Forecasting Experiment. Wea. Forecasting, 34, 1395–1416,
https://doi.org/10.1175/WAF-D-19-0056.1.

Roberts, B., I. Jirak, A. Clark, S. Weiss, and J. Kain, 2019:
Postprocessing and visualization techniques for convection-
allowing ensembles. Bull. Amer. Meteor. Soc., 100, 1245–1258,
https://doi.org/10.1175/BAMS-D-18-0041.1.

}}, B. T. Gallo, I. L. Jirak, A. J. Clark, D. C. Dowell, X. Wang,
and Y. Wang, 2020: What does a convection-allowing ensemble
of opportunity buy us in forecasting thunderstorms? Wea. Fore-
casting, 35, 2293–2316, https://doi.org/10.1175/WAF-D-20-0069.1.

Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification
of rainfall accumulations from high-resolution forecasts of
convective events. Mon. Wea. Rev., 136, 78–97, https://doi.
org/10.1175/2007MWR2123.1.

Roebber, P. J., 2009: Visualizing multiple measures of forecast
quality. Wea. Forecasting, 24, 601–608, https://doi.org/10.1175/
2008WAF2222159.1.

Rothfusz, L. P., R. Schneider, D. Novak, K. Klockow-McClain,
A. E. Gerard, C. Karstens, G. J. Stumpf, and T. M. Smith,
2018: FACETs: A proposed next generation paradigm for
high-impact weather forecasting. Bull. Amer. Meteor. Soc.,
99, 2025–2043, https://doi.org/10.1175/BAMS-D-16-0100.1.

Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic
forecasts from convection-allowing ensembles using neighbor-
hood approaches: A review and recommendations. Mon. Wea.
Rev., 145, 3397–3418, https://doi.org/10.1175/MWR-D-16-0400.1.

}}, and Coauthors, 2010: Toward improved convection-allowing
ensembles: Model physics sensitivities and optimizing probabil-
istic guidance with small ensemble membership. Wea. Forecast-
ing, 25, 263–280, https://doi.org/10.1175/2009WAF2222267.1.

Skamarock, W. C., and Coauthors, 2008: A description of
the Advanced Research WRF version 3. NCAR Tech
Note NCAR/TN-4751STR, 113 pp., https://doi.org/10.
5065/D68S4MVH.

Skinner, P. S., and Coauthors, 2018: Object-based verification of a
prototype Warn-on-Forecast System. Wea. Forecasting, 33,
1225–1250, https://doi.org/10.1175/WAF-D-18-0020.1.

Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio,
and S. J. Weiss, 2011: Probabilistic forecast guidance for severe
thunderstorms based on the identification of extreme phenom-
ena in convection-allowing model forecasts. Wea. Forecasting,
26, 714–728, https://doi.org/10.1175/WAF-D-10-05046.1.

Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-
Forecast System: A vision for 2020. Bull. Amer. Meteor. Soc.,
90, 1487–1499, https://doi.org/10.1175/2009BAMS2795.1.

}}, and Coauthors, 2013: Progress and challenges with warn-on-
forecast. Atmos. Res., 123, 2–16, https://doi.org/10.1016/j.
atmosres.2012.04.004.

Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski,
and R. Wolf, 2006: Buyer beware: Some words of caution on
the use of severe wind reports in postevent assessment and
research. Wea. Forecasting, 21, 408–415, https://doi.org/10.
1175/WAF925.1.

Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz,
2006: Evolution of the U.S. tornado database: 1954–2003.
Wea. Forecasting, 21, 86–93, https://doi.org/10.1175/WAF910.1.

WEATHER AND FORECAS T ING VOLUME 37636

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/06/22 06:43 PM UTC

https://doi.org/10.1175/2009WAF2222274.1
https://doi.org/10.1175/2009WAF2222269.1
https://doi.org/10.1175/2009WAF2222269.1
https://doi.org/10.1175/WAF-D-12-00113.1
https://dtcenter.org/com-GSI/users/docs/
https://doi.org/10.1175/MWR-D-13-00027.1
https://doi.org/10.1175/WAF-D-19-0060.1
https://doi.org/10.1175/WAF-D-15-0107.1
https://doi.org/10.1175/WAF-D-15-0107.1
https://doi.org/10.1175/WAF-D-18-0112.1
https://doi.org/10.1175/WAF-D-18-0112.1
https://doi.org/10.1175/MWR-D-19-0379.1
https://doi.org/10.1175/WAF2007106.1
https://doi.org/10.1175/2010WAF2222430.1
https://doi.org/10.1175/WAF-D-20-0098.1
https://doi.org/10.1175/WAF-D-20-0098.1
https://doi.org/10.1175/WAF-D-19-0145.1
https://doi.org/10.1175/WAF-D-19-0145.1
https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2
https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2
https://doi.org/10.2172/6137387
https://doi.org/10.2172/6137387
https://doi.org/10.1175/WAF-D-19-0056.1
https://doi.org/10.1175/BAMS-D-18-0041.1
https://doi.org/10.1175/WAF-D-20-0069.1
https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1175/2008WAF2222159.1
https://doi.org/10.1175/2008WAF2222159.1
https://doi.org/10.1175/BAMS-D-16-0100.1
https://doi.org/10.1175/MWR-D-16-0400.1
https://doi.org/10.1175/2009WAF2222267.1
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.1175/WAF-D-18-0020.1
https://doi.org/10.1175/WAF-D-10-05046.1
https://doi.org/10.1175/2009BAMS2795.1
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1175/WAF925.1
https://doi.org/10.1175/WAF925.1
https://doi.org/10.1175/WAF910.1


Weyrich, P., A. Scolobig, and A. Patt, 2019: Dealing with inconsis-
tent weather warnings: Effects on warning quality and
intended actions. Meteor. Appl., 26, 569–583, https://doi.org/
10.1002/met.1785.

Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager,
2015: Storm-scale data assimilation and ensemble forecasting
with the NSSL experimental Warn-on-Forecast System. Part I:
Radar data experiments. Wea. Forecasting, 30, 1795–1817,
https://doi.org/10.1175/WAF-D-15-0043.1.

Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences.
3rd ed. International Geophysics Series, Vol. 100, Academic
Press, 704 pp.

Williams, C. A., and G. M. Eosco, 2021: Is a consistent message
achievable?: Defining “message consistency” for weather enter-
prise researchers and practitioners. Bull. Amer. Meteor. Soc.,
102, E279–E295, https://doi.org/10.1175/BAMS-D-18-0250.1.

Wilson, K. A., P. L. Heinselman, P. S. Skinner, J. J. Choate, and
K. E. Klockow-McClain, 2019: Meteorologists’ interpretations

of storm-scale ensemble-based forecast guidance. Wea. Climate
Soc., 11, 337–354, https://doi.org/10.1175/WCAS-D-18-0084.1.

}}, B. T. Gallo, P. S. Skinner, A. J. Clark, P. L. Heinselman, and
J. J. Choate, 2021: Analysis of end user access of Warn-on-
Forecast guidance products during an experimental forecasting
task. Wea. Climate Soc., 13, 859–874, https://doi.org/10.1175/
WCAS-D-20-0175.1.

Witt, A., M. D. Eilts, G. J. Stumpf, E. D. Mitchell, J. T. Johnson,
and K. W. Thomas, 1998: Evaluating the performance of
WSR-88D severe storm detection algorithms. Wea. Forecast-
ing, 13, 513–518, https://doi.org/10.1175/1520-0434(1998)013,
0513:ETPOWS.2.0.CO;2.

Wolff, J. K., M. Harrold, T. Fowler, J. H. Gotway, L. Nance, and
B. G. Brown, 2014: Beyond the basics: Evaluating model-
based precipitation forecasts using traditional, spatial, and
object-based methods. Wea. Forecasting, 29, 1451–1472,
https://doi.org/10.1175/WAF-D-13-00135.1.

G A L LO E T A L . 637MAY 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/06/22 06:43 PM UTC

https://doi.org/10.1002/met.1785
https://doi.org/10.1002/met.1785
https://doi.org/10.1175/WAF-D-15-0043.1
https://doi.org/10.1175/BAMS-D-18-0250.1
https://doi.org/10.1175/WCAS-D-18-0084.1
https://doi.org/10.1175/WCAS-D-20-0175.1
https://doi.org/10.1175/WCAS-D-20-0175.1
https://doi.org/10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2
https://doi.org/10.1175/WAF-D-13-00135.1

